27 research outputs found

    Organic Indoor Location Discovery

    Get PDF
    We describe an indoor, room-level location discovery method based on spatial variations in "wifi signatures," i.e., MAC addresses and signal strengths of existing wireless access points. The principal novelty of our system is its organic nature; it builds signal strength maps from the natural mobility and lightweight contributions of ordinary users, rather than dedicated effort by a team of site surveyors. Whenever a user's personal device observes an unrecognized signature, a GUI solicits the user's location. The resulting location-tagged signature or "bind" is then shared with other clients through a common database, enabling devices subsequently arriving there to discover location with no further user contribution. Realizing a working system deployment required three novel elements: (1) a human-computer interface for indicating location over intervals of varying duration; (2) a client-server protocol for pre-fetching signature data for use in localization; and (3) a location-estimation algorithm incorporating highly variable signature data. We describe an experimental deployment of our method in a nine-story building with more than 1,400 distinct spaces served by more than 200 wireless access points. At the conclusion of the deployment, users could correctly localize to within 10 meters 92 percent of the time

    Indoor robot gardening: design and implementation

    Get PDF
    This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening robots are mobile manipulators with an eye-in-hand camera. They are capable of locating plants in the garden, watering them, and locating and grasping fruit. The plants are potted cherry tomatoes enhanced with sensors and computation to monitor their well-being (e.g. soil humidity, state of fruits) and with networking to communicate servicing requests to the robots. By embedding sensing, computation, and communication into the pots, task allocation in the system is de-centrally coordinated, which makes the system scalable and robust against the failure of a centralized agent. We describe the architecture of this system and present experimental results for navigation, object recognition, and manipulation as well as challenges that lie ahead toward autonomous precision agriculture with multi-robot teams.Swiss National Science Foundation (contract number PBEL2118737)United States. Army Research Office. Multidisciplinary University Research Initiative (MURI SWARMS project W911NF-05-1-0219)National Science Foundation (U.S.) (NSF IIS-0426838)Intel Corporation (EFRI 0735953 Intel)Massachusetts Institute of Technology (UROP program)Massachusetts Institute of Technology (MSRP program

    Collaborative future event recommendation

    No full text
    We demonstrate a method for collaborative ranking of future events. Previous work on recommender systems typically relies on feedback on a particular item, such as a movie, and generalizes this to other items or other people. In contrast, we examine a setting where no feedback exists on the particular item. Because direct feedback does not exist for events that have not taken place, we recommend them based on individuals' preferences for past events, combined collaboratively with other peoples' likes and dislikes. We examine the topic of unseen item recommendation through a user study of academic (scientific) talk recommendation, where we aim to correctly estimate a ranking function for each user, predicting which talks would be of most interest to them. Then by decomposing user parameters into shared and individual dimensions, we induce a similarity metric between users based on the degree to which they share these dimensions. We show that the collaborative ranking predictions of future events are more effective than pure content-based recommendation. Finally, to further reduce the need for explicit user feedback, we suggest an active learning approach for eliciting feedback and a method for incorporating available implicit user cues.Nokia Research Cente

    Growing an organic indoor location system

    No full text
    Most current methods for 802.11-based indoor localization depend on surveys conducted by experts or skilled technicians. Some recent systems have incorporated surveying by users. Structuring localization systems "organically," however, introduces its own set of challenges: conveying uncertainty, determining when user input is actually required, and discounting erroneous and stale data. Through deployment of an organic location system in our nine-story building, which contains nearly 1,400 distinct spaces, we evaluate new algorithms for addressing these challenges. We describe the use of Voronoi regions for conveying uncertainty and reasoning about gaps in coverage, and a clustering method for identifying potentially erroneous user data. Our algorithms facilitate rapid coverage while maintaining positioning accuracy comparable to that achievable with survey-driven indoor deployments.Nokia Research Cente
    corecore